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Obligate cooperative breeding species demonstrate a high rate of group extinction, which may be due to
the existence of a critical number of helpers below which the group cannot subsist. Through a simple
model, we study the population dynamics of obligate cooperative breeding species, taking into account
the existence of a lower threshold below which the instantaneous growth rate becomes negative. The
model successively incorporates (i) a distinction between species that need helpers for reproduction,
survival or both, (ii) the existence of a migration rate accounting for dispersal, and (iii) stochastic
mortality to simulate the e¡ects of random catastrophic events. Our results suggest that the need for a
minimum number of helpers increases the risk of extinction for obligate cooperative breeding species. The
constraint imposed by this threshold is higher when helpers are needed for reproduction only or for both
reproduction and survival. By driving them below this lower threshold, stochastic mortality of lower
amplitude and/or lower frequency than for non-cooperative breeders may be su¤cient to cause the
extinction of obligate cooperative breeding groups. Migration may have a bu¡ering e¡ect only for groups
where immigration is higher than emigration; otherwise (when immigrants from nearby groups are not
available) it lowers the di¡erence between actual group size and critical threshold, thereby constituting a
higher constraint.
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1. INTRODUCTION

Obligate cooperative breeding animals are characterized
by the presence of non-reproductive individuals which
help to raise the o¡spring of a few breeding individuals.
In consequence, reproductive success and/or survival
increases with group size in most cooperative breeding
species (e.g. white-fronted bee-eaters, Merops bullockoides
(Emlen & Wrege 1991), Florida scrub jays, Aphelocoma
coerulescens (Mumme 1992), naked mole-rats, Heterocephalus
glaber (Jarvis et al. 1994), dwarf mongooses, Helogale
parvula (Rood 1990), suricates, Suricata suricatta (Clutton-
Brock et al. 1999a), jackals, Canis mesomelas and Canis aureus
(Moehlman 1979), coyotes, Canis latrans (Beko¡ & Wells
1982) and lions, Panthera leo (Packer et al. 1988)). This can
represent an important constraint when the presence of a
critical number of helpers is necessary for signi¢cant
reproductive success or survival (e.g. white-winged
choughs, Corcorax melanorhamphos (Heinsohn 1992), wild
dogs, Lycaon pictus (Malcom & Martens 1982), banded
mongooses, Mungos mungo (Cant 1998) and dwarf
mongooses (Creel & Creel 1991)). Below this critical
group size, the growth rate of these obligate cooperative
breeding species (hereafter cooperators) becomes inver-
sely density dependent and their population dynamics
display an Allee e¡ect (negative growth rate at low
density; Allee et al. 1949). As a consequence, if this lower
threshold is reached, it becomes increasingly di¤cult for
the group to increase or even maintain its size.

There are several well-documented examples of the
existence of such a lower group size threshold, whether
helpers are needed for survival or for reproduction. In
white-winged choughs, only groups of seven and above
produce more than one young on average over the entire
year and groups of less than four are incapable of
breeding successfully (Heinsohn 1992). Similarly, in
banded mongooses, groups of less than six individuals
failed to raise pups despite six breeding attempts over
three years (Cant 1998) and groups of less than four adult
capybaras (Hydrochaeris hydrochaeris) were never able to
breed successfully (E. Herrera, personal communication).
In dwarf mongooses, a minimum group size of ¢ve is
necessary for their speci¢c cooperative vigilance system
(Rasa 1989), under which mortality rapidly exceeds
birth, leading to a quick disappearance of the whole
group. Groups of less than four adult stripe-backed wrens
(Campylorhynchus nuchalis) are signi¢cantly less successful at
mobbing predators and at driving birds from other
species to do so (Rabenold 1990). When prey are scarce,
groups of less than ¢ve adult suricates are not able to both
forage and successfully guard the group against predators
and, consequently, become extinct (Clutton-Brock et al.
1998). Packs of fewer than four African wild dogs rarely
manage to raise any pups (Woodro¡e et al. 1997), mainly
because they need to defend them from predation, coop-
eratively hunt large prey (e.g. Creel & Creel 1995) and
need to defend their hills against kleptoparasitism from
hyenas (Crocuta crocuta) (Carbone et al. 1997).
It has been suggested that the tendency for frequent

group extinction witnessed for these cooperative breeding
species (Jarvis et al. 1994; Burrow 1995; Clutton-Brock et al.
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1998) is due to the existence of this lower threshold
(Clutton-Brock et al. 1999b). The aim of this paper is to
investigate the demographic consequences of obligate coop-
erative breeding through a simple mathematical model
mimicking the population dynamics of these species
(mainly the Allee e¡ect). We distinguish three possible
cases: a critical number of helpers is needed (i) for survival,
(ii) for reproduction, and (iii) for both survival and repro-
duction. In addition, we examine the e¡ect of migration on
the population dynamics of these particular species.
Finally, we investigate the di¡erential impact of random
catastrophes on species with di¡erent breeding systems.

2. THE MODELS

(a) Cooperators versus non-cooperators
Although by convention we will often refer to `popula-

tion' parameters, the basic unit of breeding individuals we
model here is the social group. Our study is focused on
population dynamics, expressing conclusions from the
viewpoint of the persistence of the population only: we do
not tackle the evolutionary strategies behind processes.
Aiming for simplicity, we chose to describe non-coopera-
tive breeding population dynamics starting from the
continuous-time logistic equation, because it is a good
compromise between realism and simplicity (e.g. May
1973; Berryman 1992):

dN
dt
� rN 1ÿN

K

� �
. (1)

Here, r is the per capita intrinsic growth rate of the popu-
lation and K is the carrying capacity of the habitat.

We next want to study the e¡ect of inverse density
dependence on obligate cooperators. The e¡ect of density
dependence is, however, not truly inverse: it is inverse at
low densities, below a critical threshold, say Kÿ. Above
this threshold, there is a density-dependent constraint,
since the population growth has to be limited by an
upper threshold, the carrying capacity of the environ-
ment, say K+. The instantaneous growth rate of the
population will be negative below Kÿ and positive above
it: dN/dt will be proportional to a term (1ÿ Kÿ/N).
Meanwhile, the instantaneous growth rate will be nega-
tive above K+ and positive below it: dN/dt will be propor-
tional to a term (1ÿN/K�). The product of these two
terms will provide a positive growth rate between Kÿ and
K+ and a negative growth rate elsewhere.

This leads to the following model,

dN
dt
� rN 1ÿ N

K�

� �
1ÿ Kÿ

N

� �
. (2)

This very simple model displays the Allee e¡ect (Allee et
al. 1949): once the group falls below the lower threshold,
the negative instantaneous growth rate leads to disap-
pearance. The two stable equilibrium points of the
density-dependent model (equation (1)), 0 and K, are also
found in equation (2), in addition to a third and unstable
point, Kÿ. Whereas in the non-cooperator system any
point will reach the stable equilibrium point corre-
sponding to the carrying capacity, only initial conditions
above the lower threshold (Kÿ) will do so in the coop-
erator system.

(b) Constraints on reproduction and on survival
Not all cooperative breeders have a group size

constraint on both reproduction and survival: the
constraint may be on survival only (helpers increase
survival) or on reproduction only (helpers increase repro-
ductive success) and the population dynamics may
change accordingly. We thus study the e¡ect of di¡erent
constraints on cooperative breeding by modifying equa-
tion (2). We make a distinction between the e¡ect of
density dependence on reproduction only and on survival
only. For this, we use r�b7m, where b is the intrinsic
birth rate and m is the intrinsic death rate of the popula-
tion. The e¡ect of a density-dependent constraint on
mortality is opposite to its e¡ect on birth: the mortality
term will increase with N, while the birth term will
decrease. We start from the following density-dependence
model,
growth rate � birth rate7 death rate

dN
dt
� bN ÿ bN2

K

z������}|������{0@ 1Aÿ mN ÿ mN2

K

z�������}|�������{0@ 1A,

where bN is the density-independent birth rate, (bN 2)/K
is the density-dependent constraint on birth rate, mN is
the density-independent mortality rate, and (mN 2)/K is
the density-dependent mortality rate.
We adopt the following logistic model,

MDDBDD:
dN
dt
� bN 1ÿN

K

� �
ÿ mN ÿ 1ÿN

K

� �� �
, (3)

where DD stands for density dependence.
Here, the e¡ect of density dependence acts in opposite

ways for reproduction and survival. Similarly, we have for
the inverse density-dependent model r�b7m, which
gives the following model,

dN
dt
� bN 1ÿ N

K�

� �
1ÿ Kÿ

N

� �
ÿ mN ÿ 1ÿ N

K�

� �
1ÿ Kÿ

N

� �� �
.

(4)

The birth term can be either density dependent
[BDD� bN(17N/K+)] or inverse density dependent
[BIDD� bN(17N/K+)(17Kÿ/N)] and the mortality term
can be either density dependent [MDD�mN(7(1
7N/K+))] or inverse density dependent [MIDD
�mN(7(17N/K+)(17Kÿ/N))]. By adding the e¡ects of
birth and mortality, we obtain four possible instantaneous
growth rates of the population. They are given in ¢gure 1,
with the corresponding curve of the instantaneous growth
rate of the population as a function of the population size
and for arbitrary values of the parameters (the point here
being comparison of the lower equilibrium for the di¡erent
models). The points at which these curves cross the x-axis
are the equilibrium points: minimum group size (except
for the model with strict density dependence) and carrying
capacity. The growth rate is always negative above the
carrying capacity and below the minimum group size.The
carrying capacity is the same for all models. It is not the
case for the minimum group size: as shownby the curves in
¢gure 1, (b+m)Kÿ/(b+m)4bKÿ/(b+m)4mKÿ/(b+m) for
any population with a positive intrinsic growth rate
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(i.e. where b4m). In other words, the minimum group size
threshold is higher when the cooperative breeding is due to
reproduction only and even higher when it is due to both
reproduction and survival. The higher the equilibrium
point, the higher the constraint on the group (because this
threshold is more likely to be reached). This shows that if
cooperative breeding is needed for reproduction only (e.g.
babysitting or o¡spring feeding), the constraint is more
severe than if it is needed for survival only (e.g. guarding or
defence).

So far, we have assumed that the constraint on survival
and on reproduction was either absent or present, but
that it was the same, provided that it existed. This may
not always be the case, as some species may need helpers
for both survival and reproduction aspects (e.g. helpers
are needed for cooperative hunting without which both
survival and reproduction are compromised), but with a
higher constraint on one aspect.We now consider the case
where the constraint of cooperative breeding is present
for both survival and for reproduction, but is not the
same. We do so by setting a di¡erent value for the lower
threshold (Kÿ) for survival and for reproduction. We also
complete this analysis by considering that the upper
threshold value (K+) may also be di¡erent for survival
and for reproduction.

If the lower threshold has a di¡erent value for mortality
(Kÿm) and for birth (Kÿb), the equilibrium points are 0,
(bKÿb+mKÿm)/(b+m) and K+, whereas if the upper
threshold has a di¡erent value for mortality (K�m) and for
birth (K+b), the equilibrium points are 0, Kÿ and
(K+bK+m)(b+m)/(bK+m+mK+b). If both Kÿb 6� Kÿm and
K+b 6�K+m, the equilibrium points are 0 and ÿB��������������������
B2ÿ4ACp

=(2A), with
B� (b+m)(K�bK�m)� bKÿbK�m� mKÿmK�b,
A � bK�m � mK�b, and C � (K�bK�m) (bKÿb � mKÿm).

This shows that if the lower threshold (Kÿ) is not the
same for reproduction and for survival, then the equili-
brium point will be between these two values (Kÿb and
Kÿm). However, the equilibrium point will be closer to
the value for birth, since the intrinsic birth rate is always
higher than the intrinsic death rate. The higher the
intrinsic birth rate, the closer the equilibrium point to the
birth thresholds (Kÿb). The same applies to the upper
threshold (K+). Similarly, if both the minimum and the
maximum group sizes are simultaneously di¡erent for
birth and mortality, then the two equilibrium points will
take a value intermediate to Kÿb and Kÿm for the lower
threshold and to K+b and K+m for the upper threshold.
However, as shown in ¢gure 2 for the lower threshold,

Population dynamics of obligate cooperators F. Courchamp and others 559

Proc. R. Soc. Lond. B (1999)

K +

K -

K +

K -

K +

K -

K

–1

–0.5

0.5

1

1.5

10 20 30 40 50

K

(a)

10 20 30 40 50

–2

–12

–10

–8

–6

–4

10 20 30 40 50

–2

–12

–14

–10

–8

–6

–4

K–

K+

(b)

K–

K+

(c)

(d)

1

–4

–3

–1

–2

10 20 30 40 50

K–

K+

Figure 1. Equilibrium points for the four di¡erent models
with reproduction and survival taken as density dependent or
inverse density dependent. The instantaneous growth rate of
the four models is given as a function of the number of indivi-
duals. The higher equilibrium point (black arrows) is the
carrying capacity. The lower equilibrium point (grey arrow)
is the minimum population size (lower threshold). The former
is the same for all models; the latter is lower (lower constraint)
when inverse density dependence is on mortality only and
higher (higher constraint) when it is on both reproduction

Figure 1. (Cont.) and survival. The graphs are obtained with
the following parameter values: b� 2, m� 0.5, K�K+� 30
and Kÿ � 10. Values are given only to allow model
comparison. (a) Complete density-dependence model
(abbreviation BDD7MDD) with equilibrium points 0 and K+.
(b) Density dependence on survival only model (abbreviation
BIDD7MDD) with equilibrium points 0, bKÿ/(b+m) and K+.
(c) Density dependence on reproduction only model
(abbreviation BDD7MIDD) with equilibrium points 0,
mKÿ/(b+m) and K+. (d) Complete inverse density-dependence
model (abbreviation BIDD7MIDD) with equilibrium points 0,
(b+m)Kÿ/(b+m) and K+.



these points will depend more closely on the threshold for
reproduction (steeper slope). Other things being equal,
the constraint caused by cooperative breeding is more
severe when owing to reproduction than when owing to
survival: the larger the number of helpers needed for
reproduction, the higher ¢nal constraint on the group.

(c) Migration
To test the e¡ect of migration in cooperative breeders,

we incorporate a rate of migration of individuals between
groups. We assume that migration is density dependent
(e.g. Janosi & Scheuring 1997): provided a su¤cient
source, immigration decreases proportionally to group
size, up to the upper threshold, after which it stops.
Emigration follows the opposite pattern. We set d� e7i,
where the migration rate d is the di¡erence between the
emigration rate e and the immigration rate i. We thus
have a positive migration rate when i4e. For the sake of
simplicity, we assume that e and i have the same variation
according to group size and, therefore, only take d into
account. Since d is density dependent, we now have the
following model,

dN
dt
� bN

�
1ÿ N

K�

��
1ÿ Kÿ

N

�
ÿ mN

�
ÿ
�
1ÿ N

K�

�
�
�
1ÿ Kÿ

N

��
ÿ dN

�
1ÿ N

K�

�
, (5)

with the following equilibrium point, [0, (b� m)Kÿ/(b�
m7d ), K+], with only 0 and K+ being stable. If coopera-
tive breeding is based on reproduction only or on survival
only, the equilibrium point becomes (0, bKÿ/(b� m7d ),
K+) or (0, mKÿ/(b� m7d ), K+), respectively. When
migration is taken into account, the upper (stable) equili-

brium point remains the same. The lower (unstable) equi-
librium point, however, becomes higher (proportionally
to the migration rate) than Kÿ. The di¡erence between
the new equilibrium point and the one without migration
(Kÿ) is a function of the migration rate d. As seen in
¢gure 3, if d50 (immigration is higher than emigration),
taking migration into account decreases the value of the
lower threshold, which means a less severe constraint of
cooperative breeding on the group. If d40, migration
increases the lower threshold, which means a more severe
constraint of cooperative breeding on the group. As could
be expected, given a constant emigration rate, immigra-
tion can be viewed as acting as a bu¡er: the higher the
immigration rate, the less likely the group is to reach Kÿ.
It is thus advantageous for a group to have migration in
obligate cooperator species only if immigration is higher
than emigration.

(d) E¡ects of random catastrophes
Once the carrying capacity is reached, changes can

only occur from perturbations external to the population
dynamics, for both non-cooperators and cooperators,
with the current models. We thus simulated random
catastrophic events, which are usually more important
than environmental and demographic stochasticity in
determining the persistence times of populations (Sha¡er
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Figure 2. Value of the minimum population size according to
the minimum number of helpers needed for survival (Kÿm)
and for reproduction (Kÿb). If the constraint is on survival
(high Kÿm and low Kÿb, grey circle), then the minimum
population size will be lower (the constraint of cooperative
breeding will be lower) than if the constraint is more on
reproduction (high Kÿb and low Kÿm, black circle).

Figure 3. Di¡erence between the value of the minimum group
size when there is no migration and when there is migration,
as a function of the migration rate (taken as emigration minus
immigration). When this di¡erence is positive, then migration
lowers the constraint of cooperative breeding by lowering the
minimum group size (and thereby the risk that it will be
reached). This is the case when immigration is higher than
emigration, which does not occur on a large scale because of
mortality due to dispersal.



1987; Lande 1993). We did so by adding a stochastic
mortality term to the basic models (equations 3 and 4).
This new mortality term varies randomly in both magni-
tude and frequency and allows comparisons of the impact
of random catastrophes on populations with di¡erent
breeding systems. Figure 4a shows the stochastic mortality
term alone and ¢gure 4b and 4c the dynamics of both
non-cooperators and cooperators, respectively, in the
presence of this additional mortality term. Figure 4 shows
that both population types can recover from catastrophic
events. However, non-cooperative breeding populations
can recover even from important or frequent perturba-
tions, because density dependence stimulates survival and
reproduction at low density. On the contrary, the exis-
tence of a lower threshold in obligate cooperators renders
them vulnerable to catastrophic events of lower magni-
tude and/or frequency. It is also clear from ¢gure 4 that
the smaller the di¡erence between the actual population
size and the lower the threshold, the smaller (or less
frequent) stochastic perturbations need to be, to drive the
population below this threshold and therefore to extinc-
tion. In addition, the bu¡er e¡ect of immigration may be
smaller if catastrophic events are taken into account,
because these events (climate and epidemics) often a¡ect
equally nearby groups, thereby limiting immigration
from them.

3. DISCUSSION

In a previous paper, Clutton-Brock et al. (1999b)
hypothesized that the high frequency of group disappear-
ance in obligate cooperatively breeding species (Jarvis et
al. 1994; Burrow 1995; Clutton-Brock et al. 1999a) could
be due to the existence of a minimum number of helpers
needed to maintain a positive population growth rate.We
tested this hypothesis with a simple mathematical model.
Our results show that the existence of this lower threshold
increases the extinction risk of cooperative breeding
groups. In addition, we show that reproduction imposes a
higher constraint than survival for cooperative breeders.
This is simply because all species have a positive intrinsic
growth rate, implying that the intrinsic birth rate is
higher than the intrinsic death rate. Cooperative breeders
which need helpers mostly for reproduction (e.g. baby-
sitting, o¡spring and breeding-female feeding) will have a
larger minimal sustainable group size than species
needing helpers mostly for survival (e.g. guarding,
defence of territory and/or group members, and hunting),
provided all others things are equal. Similarly, species
needing cooperative breeding for both survival and
reproduction (i.e. most cooperative species) are under a
higher constraint if the number of helpers needed for
reproduction is higher than that needed for survival.
Our results also suggest that at low densities migration

may be a regulatory mechanism in the population
dynamics of obligate cooperators. At the group level,
being density dependent while the growth rate is inverse
density dependent, migration through dispersal may act
as a bu¡er, limiting the erosion of the group. It has been
shown, for example, that in stripe-backed wrens there is
more immigration than emigration in small groups, with
all immigration into small groups (Rabenold 1990).
However, immigration may prevent the group from

falling below the lower threshold only when individuals
are always available from other groups nearby, which
may not be realistic. Indeed, catastrophic events, such as
droughts, are likely to a¡ect nearby groups in a similar
way, reducing immigration when it is most needed.
Moreover, we show that when immigration is not higher
than emigration, then migration is a disadvantageous
process for groups of obligate cooperators, because it
increases the value of the lower threshold, making it more
probable for groups to drop below it. On a (meta)popula-
tion level, emigration is always higher than immigration,
because of mortality due to dispersal. This is especially
true in the harsh environments typical of many coopera-
tive breeding species (Jarvis et al. 1994; Waser et al. 1994;
Doolan & Macdonald 1996). As a consequence, migration
(taken here as the di¡erence between emigration and
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Figure 4. (a) Stochastic model accounting for mortality due
to random catastrophic events. The model is set so that
mortality peaks occur at random frequency and with
random amplitude. (b) Population growth with time of
non-cooperators when stochastic mortality is taken into
account. The population becomes extinct only in extreme
catastrophic events and it recovers even from a decrease down
to below the minimum population size of cooperators
(lower dashed line). (c) Population growth with time of
obligate cooperators when stochastic mortality is taken into
account. Cooperators may not recover from large catastrophic
events or from frequent ones, since either would drive them
below the minimum population size.



immigration) can prevent smaller groups from reaching
the critical group size when nearby large groups exist,
but, at the population level, migration is a disadvantage
for obligate cooperators from a dynamic point of view.
Gruntfest et al. (1997) recently demonstrated that, under
the Allee e¡ect, an increase in the migration rate is not
always pro¢table for the persistence of populations.
Although other satisfying explanations have been
proposed, our model shows that dynamics alone can
justify the evolution of the low migration rate observed in
cooperative breeding species (e.g. Koenig et al. 1992;
Jarvis et al. 1994).

We ¢nally demonstrate that obligate cooperators are
more sensitive to stochastic mortality. When catastrophic
events are taken into account, populations can be driven
to very low densities by a single event of large amplitude
or by a succession of events of smaller amplitude and/or
higher frequency.Where reproduction and survival would
be stimulated in non-cooperative breeding species by a
low density, on the contrary the existence of the lower
threshold in obligate cooperators leads them to extinction.
In the southern Kalahari, a severe drought in 1994^1995
resulted in the cessation of breeding in the ten groups of
suricates studied. The resulting erosion in all these groups
led to the extinction of all ¢ve groups below nine
individuals but of only one of the ¢ve groups above nine
individuals (Clutton-Brock et al. 1998). This illustrates
how similar stochastic catastrophic events can drive
small-sized groups to extinction, while groups with
initially more helpers are not driven below the threshold
and will survive the decrease. From a model simulating
the risks of wild dog populations' extinction, Ginsberg &
Woodro¡e (1997) concluded that catastrophes a¡ect the
persistence of the smallest populations, particularly if
they are not supplied by migration from other popula-
tions. Since, for di¡erent reasons, cooperative breeding
populations are not very large in natura, stochastic events
of small amplitude and/or low frequency may be su¤-
cient to drive relatively large groups to extinction. It is
noteworthy that we did not take into account demo-
graphic stochasticity in the model. Even though it is said
to be less important than environmental stochasticity and
random catastrophes (Sha¡er 1987), it is not to be
neglected (Kokko & Ebenhard 1996), meaning that this
simpli¢cation underestimates the risk that a group of a
given size will be driven below the lower threshold. The
results here can therefore be considered as optimistic,
since environmental and demographic stochasticity will
increase the risk of extinction and, therefore, the
constraint of cooperative breeding. In an associated paper
(Courchamp et al. 1999), we show how interactions with
natural enemies, such as predators or competitors,
increase the extinction risk of obligate cooperative
breeding populations, mainly by decreasing their size,
thereby rendering them more susceptible to stochastic
events.

The Allee e¡ect is a basic manifestation of multiple
equilibria much discussed by modellers, in particular in
the context of ¢sheries (e.g. Roughgarden & Smith 1996)
or pest management (e.g. Royama 1984). However, exam-
ples of biological causes of the Allee e¡ect are generally
restricted to plant^pollinator interactions (e.g. Groom
1998), genetic diversity (e.g. Asmussen 1979) and, most of

the time, di¤culty in ¢nding a mate at low densities
(Hopper & Roush 1993; Myers et al. 1995; Veit & Lewis
1996; see Fowler & Baker (1991) for more examples). As a
consequence, the Allee e¡ect has mostly been considered
for plants, invertebrates or ¢shes; birds and mammals have
seldom been considered, mainly because their high mobi-
lity and communication abilities increase their chance of
¢nding mates even at low densities. Consequently, popula-
tion dynamics studies on birds and mammals have focused
only on density dependence and density independence.We
show here that inverse density dependence at low density,
yielding an Allee e¡ect, is however of major importance
for the large number of vertebrate species with obligate
cooperative breeding systems. Even though adding more
realism (e.g. metapopulation and spatial heterogeneity)
would be important, our present results show that the
population dynamics of these species imposes on them a
higher risk of extinction than non-cooperative breeding
species. Since many of them are currently endangered, this
aspect is likely to be of major importance for the conserva-
tion of cooperative breeding species.
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